RSK promotes prostate cancer progression in bone through ING3, CKAP2, and PTK6-mediated cell survival.

نویسندگان

  • Guoyu Yu
  • Yu-Chen Lee
  • Chien-Jui Cheng
  • Chuan-Fen Wu
  • Jian H Song
  • Gary E Gallick
  • Li-Yuan Yu-Lee
  • Jian Kuang
  • Sue-Hwa Lin
چکیده

UNLABELLED Prostate cancer has a proclivity to metastasize to bone. The mechanism by which prostate cancer cells are able to survive and progress in the bone microenvironment is not clear. Identification of molecules that play critical roles in the progression of prostate cancer in bone will provide essential targets for therapy. Ribosomal S6 protein kinases (RSK) have been shown to mediate many cellular functions critical for cancer progression. Whether RSK plays a role in the progression of prostate cancer in bone is unknown. IHC analysis of human prostate cancer specimens showed increased phosphorylation of RSK in the nucleus of prostate cancer cells in a significant fraction of human prostate cancer bone metastasis specimens, compared with the primary site or lymph node metastasis. Expression of constitutively active myristylated RSK in C4-2B4 cells (C4-2B4/RSK) increased their survival and anchorage-independent growth compared with C4-2B4/vector cells. Using an orthotopic bone injection model, it was determined that injecting C4-2B4/RSK cells into mouse femurs enhanced their progression in bone compared with control cells. In PC3-mm2 cells, knockdown of RSK1 (RPS6KA1), the predominant RSK isoform, but not RSK2 (RPS6KA2) alone, decreased anchorage-independent growth in vitro and reduced tumor progression in bone and tumor-induced bone remodeling in vivo. Mechanistic studies showed that RSK regulates anchorage-independent growth through transcriptional regulation of factors that modulate cell survival, including ING3, CKAP2, and PTK6. Together, these data provide strong evidence that RSK is an important driver in prostate cancer progression in bone. IMPLICATIONS RSK, an important driver in prostate cancer progression in bone, has promising potential as a therapeutic target for prostate cancer bone metastasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oncogenes and Tumor Suppressors RSK Promotes Prostate Cancer Progression in Bone through ING3, CKAP2, and PTK6-Mediated Cell Survival

Prostate cancer has a proclivity to metastasize to bone. The mechanism by which prostate cancer cells are able to survive and progress in the bonemicroenvironment is not clear. Identification of molecules that play critical roles in the progression of prostate cancer in bone will provide essential targets for therapy. Ribosomal S6 protein kinases (RSK) have been shown to mediate many cellular f...

متن کامل

RSK-mediated down-regulation of PDCD4 is required for proliferation, survival, and migration in a model of triple-negative breast cancer

The p90 ribosomal S6 kinase (RSK) is a family of MAPK-activated serine/threonine kinases (RSK1-4) whose expression and/or activity are deregulated in several cancers, including breast cancer. Up-regulation of RSKs promotes cellular processes that drive tumorigenesis in Triple Negative Breast Cancer (TNBC) cells. Although RSKs regulate protein synthesis in certain cell types, the role of RSK-med...

متن کامل

ING3 promotes prostate cancer growth by activating the androgen receptor

BACKGROUND The androgen receptor (AR) is a major driver of prostate cancer, and increased AR levels and co-activators of the receptor promote the development of prostate cancer. INhibitor of Growth (ING) proteins target lysine acetyltransferase or lysine deacetylase complexes to the histone H3K4Me3 mark of active transcription, to affect chromatin structure and gene expression. ING3 is a stoich...

متن کامل

Prognostic significance of nuclear ING3 expression in human cutaneous melanoma.

PURPOSE The novel tumor-suppressor ING3 has been shown to modulate transcription, cell cycle control, and apoptosis. Our previous study showed that ING3 promotes UV-induced apoptosis via the Fas/caspase-8-dependent pathway in melanoma cells. To investigate the putative role of ING3 in the development of melanoma, we examined the expression of ING3 in melanocytic lesions at different stages and ...

متن کامل

Rsk-mediated phosphorylation and 14-3-3ɛ binding of Apaf-1 suppresses cytochrome c-induced apoptosis.

Many pro-apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen-activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2015